Abstract
The phthalate dioxygenase system consists of the dioxygenase, PDO, which contains a Rieske [2Fe–2S] center and a Fe(II)-mononuclear center, and the reductase, PDR. Involvement of the distal end of the 105–125 loop of PDO in its interaction with PDR was tested by substituting charged residues in the loop with alanines and by replacing the conserved tryptophan-94. Compared to wild-type PDO, all variants had lower catalytic activity and the Rieske centers were reduced more slowly by reduced PDR. The rates of oxidation of the Rieske centers by oxygen, which represent electron transfer between the Rieske and mononuclear centers, were essentially unaffected. These results suggest that positively charged residues of the distal end of the 105–125 loop are collectively involved in PDR binding with the PDO. Contrary to expectations, Trp94 variants were not directly involved in electron transfer between PDR and PDO. The tryptophan appears to have mainly a structural role, apparently preserving the hydrophilic environment of the Rieske center.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.