Abstract
Chitin is the most productive nitrogen-containing polysaccharide in nature with immense potential for transforming into a range of chemicals. However, its dense crystal structure poses a challenge for depolymerization, limiting its applications. To overcome these challenges, a novel series of deep eutectic solvents (DESs) based on benzyltrimethylammonium chloride (TMBAC) as the hydrogen bond acceptor was developed. These TMBAC-based DESs, in combination with lactic acid, oxalic acid, and malic acid as the hydrogen bond donor demonstrated efficient chitin dissolution, achieving a solubility of up to 12% and an 88% recovery rate of regenerated chitin. The regenerated chitin was characterized using XRD, FT-IR, SEM, and 13C CP-MAS NMR, which indicated the preservation of chitin's chemical structure, a significant decrease in crystallinity, and a reduction in the molecular weight. Furthermore, the enzymatic hydrolysis efficiency of chitin was nearly doubled after treatment with TMBAC-based DESs, surpassing the effectiveness of untreated chitin. This approach holds promise for facilitating subsequent transformation and utilization of chitin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.