Abstract

Determining the aeration efficiency of the stepped spillways is important because the Dissolved Oxygen (DO) concentration helps indicate the water quality. This study investigated the effects of varying step shape and chute slope on the aeration efficiency for stepped spillways. The measured parameters were DO, the inception point of the free surface, and the water surface profile above the crest to evaluate the geometry variation impacts. Several experiments were conducted on a six-step configuration over a stepped spillway with chute angle (θ = 26.6°, 21.8°, and 8.9°). The discharges up to 0.055 m3/s. The step configurations were including flat step, normal end sill, and quarter circle end sill. The results showed when the chute angle changed from 26.6° to 8.9°, the aeration efficiency of E20 improved with 11.51% at the lowest discharge and 6.05% at the highest discharge for the flat step model with 10 steps. Also, E20 improved 11.39% at the lowest discharge and 6.50% at the highest discharge for the flat step model with 6 steps. The performance of the steps with the quarter circle end sill model in terms of aeration efficiency increased by 10%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.