Abstract

Dissolved oxygen (DO) is an important indicator of aquaculture water quality. The prediction accuracy of DO content is the key role in managing and controlling aquaculture water quality. However, potential trends of DO under various conditions (such as weather) are always overlooked. This study aims to develop a novel DO forecasting model using the optimized regularized extreme learning machine (RELM) with factor extraction operation and K-medoids clustering strategy in a black bass aquaculture pond. We adopt the leave-one-out cross (LOO) error validation to obtain the optimal regularization parameter of RELM and enhance the forecasting accuracy. We further adjust the activation function to accelerate the RELM. Next, we divide the time series into day and night segments, and construct the clustering mechanism with the K-medoids method to extract the different patterns of data streams under various weather conditions. The experiments on 14 days’ data from a real-world aquaculture pond demonstrate the efficiency and accuracy of our proposed DO prediction model. We believe that our research will facilitate the development of a forecasting tool for warning hypoxia in the near future, which combines intelligent prediction models and real-time data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.