Abstract

Dissolved oxygen (DO) is one of the prime parameters for assessing the water quality of any stream. Thus, the accurate estimation of DO is necessary to evolve measures for maintaining the riverine ecosystem and designing appropriate water quality improvement plans. Machine learning techniques are becoming valuable tools for the prediction and simulation of water quality parameters. A study has been performed in the Delhi stretch of the Yamuna River, India, and physiochemical parameters were examined for 5 years to simulate the DO using various machine learning techniques. Simulation and prediction competencies of adaptive neuro fuzzy inference system-grid partitioning (ANFIS-GP) and subtractive clustering (ANFIS-SC) were performed on high dimensional river characteristics. Four different models (M1, M2, M3 and M4) were developed using different combination of input parameters to predict DO. Results obtained from the models were evaluated using root mean square error and coefficient of determination (R2) to identify the appropriate combination of parameters to simulate the DO. Results suggest that both types of ANFIS models work adequately and accurately predict the DO; however, ANFIS-GP outperforms the ANFIS-SC. M4 generated R2 of 0.953 from ANFIS-GP compared to 0.911 from ANFIS-SC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call