Abstract
A microbial dissolved oxygen (DO) uptake model was developed for a stream bed, including the effect of turbulence in the flow over the bed and pore water flow in the porous bed. The fine-grained sediment bed has hydraulic conductivities 0.01≤k≤1 cm/s, i.e., sediment particle diameter 0.006≤ds≤0.06 cm. The pore water flow is driven by pressure fluctuations at the sediment-water interface, mostly attributable to near-bed coherent motions in the turbulent boundary layer above the sediment bed. An effective mass transfer coefficient (De) coupled to a pore water flow model was used in the DO transport and DO uptake model. DO flux across the sediment-water interface and into the sediment, i.e., sedimentary oxygen demand (SOD), was related to hydraulic conductivity and microbial oxygen uptake rate in the sediment and shear velocity at the sediment-water interface. Simulated SOD values were validated against experimental data. For hydraulic conductivities of the sediment bed up to k≈0.01 cm/s, the pore water f...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.