Abstract

The nutritionally available pool of dissolved organic phosphorus (DOP) supports marine primary productivity in a range of ocean ecosystems but remains poorly resolved. Here, the relative lability of model phosphorous (P) compounds representing the major P(V) bond classes of marine DOP – phosphomonoesters (P-O-C) and phosphoanhydrides (P-O-P) – was assessed in diatom cultures of the genus Thalassiosira, as well as coastal field sites of the western North Atlantic. In diatom samples, maximum enzymatic hydrolysis rates revealed that the P-anhydride bonds of inorganic tripolyphosphate (3poly-P), followed by the P-anhydride bonds of adenosine 5’-triphosphate (ATP), were preferentially degraded relative to the P-monoesters adenosine 5’-monophosphate (AMP) and 4-methylumbelliferone phosphate (MUF-P). Consistent with these rate measurements, targeted proteomics analysis demonstrated that the underlying phosphatase diversity present in diatom samples was dominated by P-anhydride degrading enzymes (inorganic pyrophosphatases and nucleoside triphosphatases). Furthermore, biomass-normalized rates of ATP degradation were always suppressed under P-replete conditions in diatom cultures, but the effect of overall P availability on 3poly-P degradation was inconsistent among diatom strains, suggesting that inorganic polyphosphate (poly-P) degradation may persist irrespective of prevailing P levels in the marine environment. Indeed, the majority of field sites examined in the P-replete coastal western North Atlantic exhibited significantly higher maximum rates of inorganic poly-P hydrolysis relative to P-monoester hydrolysis, which was largely driven by phytoplankton dynamics. Based on these results, the possibility that P-anhydride utilization may contribute comparably or even more substantially than P-esters to community-level P demand, phytoplankton growth, and primary productivity should be considered.

Highlights

  • Marine primary productivity is fundamentally constrained by the availability of nutrients such as phosphorus (P)

  • Relative Lability of P Sources in Cell-Free Filtrates In order to explore the dissolved organic P (DOP) nutritional preferences of Thalassiosira spp., the labilities of model P sources representing the major P(V) DOP bond classes (Figure 1) were tested in whole cultures and cell-free filtrates grown in P-replete (+P) and P-deficient (−P) media

  • Over the entire growth curve, adenosine -triphosphate (ATP) and adenosine -monophosphate (AMP) hydrolysis rates were statistically similar for both strains of T. pseudonana (Figures 2C–E), except for T. pseudonana CCMP1014 cultivated in −P media (Figure 2F)

Read more

Summary

Introduction

Marine primary productivity is fundamentally constrained by the availability of nutrients such as phosphorus (P). Orthophosphate is considered the most biologically preferred P source, but in the open ocean where orthophosphate is scarce, i.e.,

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call