Abstract

The Lake Suwa (Japan) has a history of non-N-fixing Microcystis blooms. Lake Kinneret (Israel) experienced multiannual periods of sole domination by the dinoflagellate Peridinium gatunense and periods dominated seasonally by P. gatunense or cyanobacteria. Extensive studies have been carried out in both lakes regarding the role of dissolved inorganic nitrogen and phosphorus as drivers of primary productivity. There is growing evidence that dissolved organic nitrogen (DON) compounds also influence not only biomass and structure of phytoplankton communities but also microcystin production. This study focuses on relationships of DON with: (1) population dynamics of Microcystis spp. and concentrations of microcystins in Lake Suwa, and (2) population dynamics of P. gatunense as well as N- and non-N-fixing cyanobacteria in Lake Kinneret. Modelling results for historical data of Lake Suwa by means of the hybrid evolutionary algorithm HEA revealed that the prediction of abundances of four Microcystis species and concentrations of cyanotoxins achieved higher coefficients of correlation when DON/DIN-ratios were included as drivers. Population dynamics of P. gatunense in Lake Kinneret appeared to have a strong inverse relationships with DON/DIN-ratios reflected by inferential models of HEA with higher coefficients of correlation when driven by DON/DIN-ratios. When DON/DIN-ratios were included as drivers, models of Microcystis spp. in Lake Kinneret performed higher coefficients of determination compared to models of N-fixing cyanobacteria. The study highlights the need to consider DON for improved understanding and management of population dynamics of cyanobacteria and dinoflagellates in freshwater lakes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.