Abstract

Diverse lead (Pb) particles possess different ecological risks not only due to their own toxicity differences but also because of different abilities to release toxic dissolved Pb. Dissolved organic matter (DOM) was a key factor influencing dissolution processes of metal particles. However, impacts of DOM on dissolution of different Pb nano- or submicron particles were not known yet. Herein, impacts of DOM on dissolution kinetics of lead sulfide (PbS), lead sulfate (PbSO4), lead monoxide (PbO), lead tetroxide (Pb3O4) and lead dioxide (PbO2) nano- or submicron particles were firstly investigated taking Pahokee Peat humic acid (PPHA) as an example. Results indicated PPHA improved the suspending stability of Pb particles through electrostatic repulsion, and enhanced releases of dissolved Pb. Final concentration of dissolved Pb was raised by 1.22–8.82 times with PPHA. This was attributed to ligand exchange interactions between PPHA and Pb particles. Theoretical computations indicated that not only sorption or ligand exchange energy, but also numbers of ligands on the surface of particles were key factors governing impacts of PPHA on dissolved Pb. This study provided a new mechanism insight into dissolution behavior of various Pb particles and will be beneficial to their ecological risk assessment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.