Abstract
It remains debatable whether carbonized straw reapplying is a better solution than direct straw reapplying. Comparison of the characteristics and complexation behaviors of dissolved organic matter (DOM) derived from straw (ST) and biochar (BC) may offer new insights, but little current information exists. Herein, DOM samples were characterized by Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), revealing that the molecular weight and condensed aromatic components of BCDOM (457.70 Da and 71.16%, respectively) were higher than those of STDOM (433.48 Da and 3.13%, respectively). In particular, the N-containing compounds of BCDOM was more aromatic than STDOM. By combining spectroscopic techniques, complexation modeling, and chemometric analysis, BCDOM was shown to exhibit higher binding parameters (log KM) and more binding sites for Pb than STDOM. Noteworthily, the two binding sites, aromatic NO and aromatic NO2, existed only in the interaction of BCDOM with Pb. Furthermore, while phenol-OH displayed the fastest response to Pb in both STDOM and BCDOM, the binding sequences were not exactly the same. These differences may be related to the variations in the aromaticity and N-containing structures of DOM detected by FTICR-MS. These findings have implications on the stewardship of straw- and biochar-amended soil.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.