Abstract

Dissolved organic matter (DOM)-mediated divalent mercury (Hg(II)) aging kinetics play a crucial role in controlling Hg(II) transformation and bioavailability in natural aquatic environments. However, the differential environmental behaviors of new and aged Hg(II) in a same reaction system remains unknown. In this study, multi-isotope tracing was used to investigate the impacts of binding site and sulfidation during DOM-mediated Hg(II) aging processes on Hg(II) reduction and microbial methylation in the same reaction system. Stepwise reduction approach and liquid chromatography-inductively coupled plasma mass spectrometry (LC-ICP-MS) demonstrate that DOM-mediated dark aging processes are mainly driven by the rearrangement of DOM binding sites with Hg(II), but not the formation of mercury sulfide nanoparticles (HgSNP). The abundant but weaker RO/N (carboxyl and amino) Hg(II)-binding sites are replaced with stronger RSH (thiol) moieties towards Hg(II) binding with aging, resulting in a decrease in Hg(II) reduction. In contrast, besides reduction, DOM-mediated Hg(II) photoaging induces the formation of HgSNP, as revealed by LC-ICP-MS, which in turn decreases the microbial methylation potential of Hg(II). These findings help better understand and predict the kinetic characteristics of Hg(II) reactivity and its influence on Hg cycle within natural aquatic environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call