Abstract

Ice cores were collected between 10.03.93 and 15.03.93 along a 200 m profile on a large ice floe in Fram Strait. The ice was typical of Arctic multi-year ice, having a mean thickness along the profile of 2.56 ±0.53 m. It consisted mostly of columnar ice (83%) grown through congelation of seawater at the ice bottom, and the salinity profiles were characterized by a linear increase from 0 psu at the top to values ranging between 3 and 5 psu at depth. Distributions of dissolved organic carbon (DOC) and nitrogen (DON) and major nutrients were compared with ice texture, salinity and chlorophyll a. DOC, DON, dissolved inorganic nitrogen (DIN), NH4 + and NO2 − were present in concentrations in excess of that predicted by dilution curves derived from Arctic surface water values. Only NO3 − was depleted, although not exhausted. High DOC and DON values in conjunction with high NH4 + levels indicated that a significant proportion of the dissolved organic matter (DOM) was a result of decomposition/grazing of ice algae and/or detritus. The combination of high NH4 + and NO2 − points to regeneration of nitrogen compounds. There was no significant correlation between DOC and Chl a in contrast to DON, which had a positively significant correlation with both salinity and Chl a, and the distribution of DOM in the cores might best be described as a combination of both physical and biological processes. There was no correlation between DOC and DON suggesting an uncoupling of DOC and DON dynamics in multi year ice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.