Abstract

We report a data set of dissolved organic carbon (DOC) concentration and dissolved organic matter (DOM) composition (stable carbon isotope signatures, absorption and fluorescence properties) obtained from samples collected in Lake Victoria, a large lake in East Africa. Samples were collected in 2018–2019 along a bathymetric gradient (bays to open waters), during three contrasting seasons: long rainy, short rainy and dry, which corresponded to distinctly water column mixing regimes, respectively, stratified, semi-stratified and mixed regimes. Eight DOM components from parallel factor analysis (PARAFAC) were identified based on three-dimensional excitation–emission matrices (EEMs), which were aggregated into three main groups of components (microbial humic-like, terrestrial humic-like, protein-like). Spatially, the more productive bays were characterized by higher DOM concentration than deeper more offshore waters (fluorescence intensity and DOC were ~ 80% and ~ 30% higher in bays, respectively). Seasonally, the DOM pool shifted from protein-like components during the mixed regime to microbial humic-like components during the semi-stratified regime and to terrestrial humic-like components during the stratified regime. This indicates that pulses of autochthonous DOM derived from phytoplankton occurred when the lake was mixing, which increased the availability of dissolved inorganic nutrients. Subsequently, this freshly produced autochthonous DOM was microbially processed during the following semi-stratified regime. In the open waters, during the stratified regime, only terrestrial refractory DOM components remained because the labile and fresh stock of DOM created during the preceding mixed season was consumed. In the bays, the high terrestrial refractory DOM during the stratified regime may be additionally due to the allochthonous DOM input from the runoff. At the scale of the whole lake, the background refractory DOM probably comes mainly from precipitation and followed by river inputs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call