Abstract

Changes in dissolved organic matter (DOM) characteristics were investigated in two mountainous streams with closed-type sabo dams. Surface water was collected from four stations along the two mountainous streams and analyzed using ultraviolet-visible spectrophotometry and excitation-emission fluorescence matrix (EEM) methods. Optical properties of DOM indicated an increase in molecular weight and aromaticity at stations near the sabo dams. Average spectral ratio values were low before and after the dam (i.e., < 0.72) compared to other sections of the stream. Specific ultraviolet absorbance (SUVA254) increased in the vicinities of the dams. While chromophoric DOM characteristics from two sites were influenced by the dam, fluorescence components, however, did not show notable changes around dams. Instead, the three chromophoric components distinguished by EEM-parallel factor analysis, that is, humic-like (C1 and C2) and protein-like (C3) increase along the stream. Fulvic-like component (C1) had a high fluorescence intensity at all stations; all the three components were more abundant in the downstream section. Chromophoric DOM properties varied along the stream based on alterations in molecular size and aromaticity. Using multivariate analysis, the studied sites were grouped into three clusters related to sabo dams and other activities. We conclude that sabo dams modify DOM characteristics which influence the behavior of DOM transported along the stream.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call