Abstract

Wetlands are known to be important sources of dissolved organic matter (DOM) to rivers and coastal environments. However, the environmental dynamics of DOM within wetlands have not been well documented on large spatial scales. To better assess DOM dynamics within large wetlands, we determined high resolution spatial distributions of dissolved organic carbon (DOC) concentrations and DOM quality by excitation–emission matrix spectroscopy combined with parallel factor analysis (EEM–PARAFAC) in a subtropical freshwater wetland, the Everglades, Florida, USA. DOC concentrations decreased from north to south along the general water flow path and were linearly correlated with chloride concentration, a tracer of water derived from the Everglades Agricultural Area (EAA), suggesting that agricultural activities are directly or indirectly a major source of DOM in the Everglades. The optical properties of DOM, however, also changed successively along the water flow path from high molecular weight, peat-soil and highly oxidized agricultural soil-derived DOM to the north, to lower molecular weight, biologically produced DOM to the south. These results suggest that even though DOC concentration seems to be distributed conservatively, DOM sources and diagenetic processing can be dynamic throughout wetland landscapes. As such, EEM–PARAFAC clearly revealed that humic-enriched DOM from the EAA is gradually replaced by microbial- and plant-derived DOM along the general water flow path, while additional humic-like contributions are added from marsh soils. Results presented here indicate that both hydrology and primary productivity are important drivers controlling DOM dynamics in large wetlands. The biogeochemical processes controlling the DOM composition are complex and merit further investigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call