Abstract

To investigate the coupling between carbon (C) and phosphorus (P) cycling in a human‐altered stream, we conducted a whole‐ecosystem manipulation of the labile dissolved organic carbon (DOC) pool in a nitrate ()‐rich stream in the midwestern United States. For 6 d, we increased stream DOC by ∼ 1 mg L−1 through a continuous addition of sodium acetate. On the sixth day of the addition, ammonium () was increased by ∼ 130 µg N L−1 to examine the potential for nitrogen (N) to mediate coupled C and P cycling. Of the added DOC, 85% was retained within the treatment reach, which increased ecosystem respiration with respect to the reference reach. Alkaline phosphatase activity (APA) increased from day 1 to day 6; however, water column P uptake only increased on day 6 concurrent with the addition. Gross primary production decreased during the DOC addition relative to the reference reach, yet seemed to recover on day 6 ( addition). These results suggest that during the DOC addition, heterotrophs out‐competed autotrophs for N and that sediment‐sorbed P sustained the heterotrophic community while P uptake from the water column was dominated by autotrophs. Because APA and P uptake were stimulated by the simultaneous DOC and addition, P cycling appeared to be N limited, despite the high ambient concentration; this indicates a strong preferential uptake of over In streams, C and P cycling can be intrinsically coupled through biological mechanisms, and this coupling can be mediated by the availability of different forms of inorganic N.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.