Abstract

Dissolved organic carbon (DOC) in inland waters (rivers, reservoirs, lakes, and small ponds) plays a significant role in the global carbon cycle and affects global climate change. In addition, DOC is also a vital indicator of the water environment due to its multiple physical, chemical, and ecological roles. Lakes and ponds of small sizes are abundant on a global and regional scale, and a large increase in ponds is expected with global agricultural land expansion. However, the DOC characteristics of ponds in agricultural watersheds are still unclear, posing a challenge to better understanding the carbon cycle of inland waters. In this study, we explored the DOC variability and their influencing factors in ponds draining different landscapes in a typical agricultural watershed to address the issue. The field measurements over a year showed the DOC concentration varied among ponds draining different landscapes. Specifically, the mean DOC concentrations in the natural pond, sewage pond, aquaculture pond, and irrigation pond were (6.17 ± 1.49) mg/L, (12.08 ± 2.92) mg/L, (9.36 ± 2.92) mg/L, and (8.91 ± 2.71) mg/L, respectively. Meanwhile, monthly measurements found the DOC varied across sampling dates. The DOC variability was positively correlated with nutrients, primary production, and precipitation, suggesting anthropogenic loadings, an internal production rate, and hydrological regime that regulated the substantial variability of DOC in these ponds at the watershed scale. Further, large pollutant discharge and high primary production led to peak DOC occurring in the sewage pond. Our results implied that more attention should be paid to ponds in agricultural watersheds to better understand the roles of inland waters in the global carbon cycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call