Abstract
The development of bioprocesses capable of producing large numbers of human induced pluripotent stem cells (hiPSC) in a robust and safe manner is critical for the application of these cells in biotechnological and medical applications. Scalable expansion of hiPSC is often performed using polystyrene microcarriers, which have to be removed from the cell suspension using a separation step that causes loss of viable cells. In this study, application of novel xeno-free dissolvable microcarriers (DM) for an efficient and integrated expansion and harvesting of hiPSC is demonstrated. After an initial screening under static conditions, hiPSC culture using DM is performed in dynamic culture, using spinner-flasks. A maximum 4.0 ± 0.8-fold expansion is achieved after 5 days of culture. These results are validated with a second cell line and the culture is successfully adapted to fully xeno-free conditions. Afterwards, cell recovery is made within the spinner flask, being obtained a 92 ± 4% harvesting yield, which is significantly higher than the one obtained for the conventional filtration-based method (45 ± 3%). Importantly, the expanded and harvested hiPSC maintain their pluripotency and multilineage differentiation potential. The results here described represent a significant improvement of the downstream processing after microcarrier-based hiPSC expansion, leading to a more cost-effective and efficient bioprocess.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.