Abstract

The uranyl copper-phosphate, metatorbernite, has been identified in the shallow vadose zone of the 300 A area at the Hanford site, WA, USA. Consequently, modeling the evolution of U concentrations in vadose zone porewaters driven by meteoric water recharge requires accurate knowledge of metatorbernite solubility. Previous determinations of the solubility constant for metatorbernite were under constrained. In the present contribution, the dissolution of natural metatorbernite crystals was studied at target pH 2.5 and 3.0, using both nitric and phosphoric acid. Steady state was approached from under- and supersaturation. The experiments and calculations yielded a preferred log K(sp) = -28.0 ± 0.1 that is significantly different than previously determined values. Further, both stoichiometric and nonstoichiometric dissolution was observed as a function of pH and aqueous phosphate concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.