Abstract
This study involves the characterization and dissolution of a thermoplastic elastomer copolymer used as binder in the new generation of energetic materials. The thermoplastic binder is an oxetane based elastomer manufactured by Thiokol Corporation. Since the binder encapsulates other components in an energetic material formulation, its controlled dissolution is crucial to the recovery and recycle of all the energetic material ingredients. The polymeric binder was found to be highly soluble in ethyl acetate and THF. The dissolution rate data obtained under well defined flow dynamics was satisfactorily correlated with the film model. External mass transfer resistance was found to be generally important but became negligible for Reynolds numbers above 6.0×104. The mass transfer coefficients calculated on the basis of the film model were found to be an Arrhenius function of temperature. The activation energy for the dissolution rates was estimated to be 4.8 kcal/mol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.