Abstract

Cement is an essential materials to construct the subsurface radioactive waste disposal system. However, cementitious materials alter the groundwater pH to highly alkaline condition about 13. To comprehend the effect of such a hyperalkaline condition on the repository surroundings, this study focused on the dissolution rates of amorphous silica at [NaOH]=10-1 mol-dm-3. The used samples were three kinds of pure commercial silica and a natural silica scale which was obtained from inside wall of the hot-water pipe of a geothermal power plant. The observed dissolution rates were interpreted with using the model, which assumed that the particle sizes decrease with the progress of dissolution. Moreover, due to the particle size distribution anticipated in the natural silica scale, this analysis assumed it contained particles with various initial diameters. In the results, (1) all pure silica samples and at least 60wt% of the silica scale showed good agreement of the activation energy of the dissolution in the range of 77 through 88kJ-mol-1 in the highly alkaline solution, (2) these rate constants were of the order of 10-8-10-7 mol-m-2.s-1 at around 310 K and were definitely larger than those already reported for quartz, (3) the specific surface area based on BET method was revealed to be an important factor to give the main difference in the dissolution rates between the synthetic silica and the natural silica.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.