Abstract

The anodic polarization behaviour of iron whisker crystals was investigated in a neutral solution with or without the presence of chloride ion, with special attention to the role played by surface defects in the dissolution, the passivation and the pitting of iron. The grown whisker used was substantially dislocation-free and the defect density was varied by twisting of whisker. With increase in the angle of twisting, the anodic dissolution current increased in a chloride-free solution, whereas it decreased in a chloride-containing solution. The defect density in the substrate had no remarkable effect on passivation but the thickness of the passive film was slightly increased on twisted whiskers. The anodic polarization curve of a grown whisker in a chloride-containing solution did not exhibit a distinct pitting potential. By twisting of whisker, however, a current rise due to pitting appeared on the polarization curve and the apparent pitting potential shifted in the negative direction with increasing angle of twisting. Potentiostatic polarization experiments in a chloride-containing solution showed the emergence of random current pulses due to the breakdown of passive film and to repassivation. It is highly probable that the breakdown of the passive film occurs at the physical or chemical inhomogeneities in the passive film not associated with dislocation termini but that pitting occurs only when the breakdown occurs at emergent dislocation sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call