Abstract

It is demonstrated on real solutions of samples of spent nuclear fuel (SNF) from WWER-1000 reactors (1000-MWel water-cooled water-moderated energy reactors) that weakly acidic solutions of iron(III) nitrate at the molar ratio Fe(III): U ≥ 2.0 dissolve SNF with quantitative transfer of U and Pu into the solution. In the process, Fe partially precipitates in the form of a basic salt precipitate together with a part of the fission products (>90% of Ru, ~90% of Мо, >60% of Tc, and 40% of Zr) already in the step of the fuel dissolution. Cs, Eu, and Am pass into the solution together with U and Pu. With the required conditions followed, U and Pu can be separated from the solution by precipitation of their peroxides or quantitatively extracted from this solution with 30% TBP in Isopar L. The presence of ≥1 M Fe(NO3)3 in the solution considerably increases the distribution ratios of TPE and REE, which allows their recovery from a weakly acidic nitrate solution to be also performed with 30% TBP in a diluent. This process can serve in the future as a basis for the development of a new integrated technology combining the PUREX process with TPE partitioning using a common extractant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.