Abstract

The dissolution of oxygen in polycrystalline palladium Pd(poly) at an O2 pressure of 100 Pa and temperatures of 500–950 K has been investigated by temperature-programmed desorption. At 500 K, the process yields a surface palladium film that includes an oxide-like reconstructed structure on a rarefied metal surface layer. At this temperature, palladium sorbs ~2 monolayers (ML) of oxygen. At 600–800 K, palladium dissolves up to ~140 ML of oxygen as a result of O2 chemisorption on the surface of the oxide film, penetration of Oads atoms under the oxide film, and their diffusion into the metal bulk. The dependence of the amount of oxygen sorbed by Pd(poly) (n) on the time of exposure to an O2 atmosphere is described by a nearparabolic function, n = atb, indicating that oxygen atoms diffuse in the metal lattice. The activation energy of this diffusion, Е dif, is ~83.5 kJ/mol. At high temperatures (800–950 K), palladium sorbs much less oxygen (≤10 ML). This is due to the complete decomposition of the surface oxide film, a process that markedly hampers the insertion of Oads atoms under the surface layer of the metal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call