Abstract

Industrial fusion of microalloying elements in steelmaking is imperative in defining and optimizing certain steel properties due to their strengthening and significant grain refinements effects at minute quantities. Copper, vanadium, and columbium are explored in this investigation to monitor their respective dissolution processes in a ladle metallurgy furnace (LMF), with concise parametric studies on effects of number of plugs and variations in argon gas flow rates for stirring. To track particle disintegration in the molten bath inside, intricate numerical processing was carried out with the use of mathematical models and to simulate the mixing process; turbulent multiphase computational fluid dynamics (CFD) models were combined with a user-defined function. The numerical findings highlight the connection between mixing time and gas blowing since the quantity of stirring plugs employed and the gas flow rates directly affect mixing effectiveness. The amount of particles to be injected and their total injection time were validated using industrial measurement; an average difference of 9.9% was achieved. In order to establish the need for an exceptionally high flow rate and inevitably reduce resource waste, extreme charging of flow rates for gas stirring were compared to lesser gas flow rates in both dual- and single-plug ladles. The results show that a single-plug ladle with a flow rate of 0.85 m3/min and a dual-plug ladle with a total flow rate of 1.13 m3/min have the same mixing time of 5.6 min, which was the shortest among all scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call