Abstract

The dissolution of magnesium silicate minerals such as serpentine in aqueous solutions saturated or near saturated with carbon dioxide (CO2) enables its subsequent reaction to form magnesium carbonate, a process called aqueous mineral carbonation. The dissolution rate of magnesium ions (Mg2+) from thermally activated serpentine and the factors influencing the rate and extent of dissolution have been studied in our research group. The current contribution focuses on the effect of temperature and pH on the dissolution of heat activated lizardite (a polymorph of serpentine). The extent of dissolution of thermally activated lizardite was measured experimentally as a function of temperature (25 °C ≤ T ≤ 75 °C) and pH (1.2 ≤ pH ≤ 9.8). It was found that at higher temperatures the level of Mg extraction is greater during the initial stage of dissolution but is then hindered by the re-precipitation of amorphous silica. Thermodynamic modelling was used to assess the susceptibility of solid phase formation and confirmed the likelihood of re-precipitation of amorphous silica from the solutions. For the first time, in this work, the crackling core model (CCM) was used to model experimental data at different pH values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.