Abstract

Canadian and French university teams have joined efforts in carrying out an experimental and theoretical study of the dissolution behavior of the hard-alpha inclusion in liquid titanium alloys. Synthetic hard-alpha dense particles of up to 6 wt pct nitrogen and nitrided sponge of up to 15 wt pct nitrogen were partially dissolved in a titanium or a titanium alloy bath. The metallographic examinations and microprobe analysis show that the dissolution process is always controlled by the outward diffusion of nitrogen into the bath through an external layer of beta phase. The growth of this beta phase layer depends on the velocity of liquid flow in the bath and can lead to an initial increase in the inclusion size. For porous particles, the diffusion of nitrogen from the pellet matrix to the infiltrations gradually leads to a partial densification of the inclusion. A numerical representation of the dissolution problem was developed, including the transient diffusion of nitrogen through intermediate solid phases. The comparison is good between the numerical simulations, the experimental measurements, and the dissolution kinetics given in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call