Abstract
In eukaryotic cells, topoisomerase III forms an evolutionarily conserved complex with a RecQ family helicase and two OB-fold containing proteins, replication protein A (RPA) and RMI1. One role for this complex is to catalyze the completion of homologous recombination reactions in which the recombining DNA molecules are covalently interlinked by a double Holliday junction structure. This process, which requires the single-stranded DNA decatenation activity of topoisomerase III, is termed Holliday junction "dissolution" to distinguish it from Holliday junction "resolution" catalyzed by endonucleases (resolvases) that simply cleave the four-way junction. Holliday junction dissolution gives rise exclusively to non-cross-over recombinant products, which would have the effect of suppressing sister chromatid exchanges and loss of heterozygosity between homologous chromosomes. In this chapter, we provide a detailed experimental protocol for the preparation of an oligonucleotide-based, double Holliday junction substrate and for the biochemical analysis of dissolution in vitro.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.