Abstract

In this work, a two-step chemical-potential-gradient model based on nonequilibrium thermodynamic principles was developed to investigate the dissolution mechanism of crystalline active pharmaceutical ingredients (APIs). The perturbed-chain statistical associating fluid theory was used to calculate the required solubilities and chemical potentials of the investigated APIs. The statistical rate theory was used to describe the mass-transfer rate of the APIs at the solid–liquid interface during the dissolution process. Dissolution profiles of indomethacin, naproxen, and glibenclamide in water and in buffered solutions at pH 5.0, 6.5, and 7.2 were measured using a rotating-disk system (USP II). The specific dissolution mechanisms of the APIs, such as surface reaction and diffusion, were analyzed by applying the proposed model to identify the rate-controlling step. The results show that the dissolution mechanisms of indomethacin, naproxen, and glibenclamide change with varying pH values of the solution medium. ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.