Abstract

The dissolution of cellulose in double salt ionic liquids (DSILs) was studied in detail and compared with the dissolution in individual constituent ionic liquids (ILs). The DSILs, [C4mim](CH3CO2)xCl1-x (x is the mole fraction of the single component ILs), were synthesized using acetate and chloride salts of 1-butyl-3-methylimidazolium. These DSILs were then used for the investigation of the solubility of cellulose in the whole mole fraction range. Commercial cellulose (CC) powder, kraft pulp (KP), and prehydrolysis kraft pulp (PHKP) of jute were chosen as cellulose sources. The solubility of cellulose increased with an increasing temperature for [C4mim](CH3CO2)0.6Cl0.4 and with increasing amount of [C4mim]Cl in DSILs. The maximum solubility of CC powder was 32.8 wt% in [C4mim](CH3CO2)0.6Cl0.4 at 100 °C, while for KP and PHKP, solubilities were 30.1 and 30.5 wt%, respectively under the identical condition. Cellulose could be regenerated from the DSILs using water as an antisolvent. Structure, morphology, and thermal stability of the regenerated cellulosic materials were analyzed. DSILs could be recycled >99 % without a discernible change in structure. This work demonstrates that DSILs display enhanced solubility over ILs system and have potential as a chemical processing methodology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.