Abstract

The structures, stabilities, thermodynamic quantities, dissociation energies, infrared spectra, and electronic properties of LiOH hydrated by up to seven water molecules are investigated by using the density-functional theory and the Møller-Plesset second-order perturbation theory (MP2). Further accurate analysis based on the coupled-cluster theory with singles, doubles, and perturbative triples excitations agrees with the MP2 results. The Li-OH stretch mode significantly shifts with the increase of water molecules, and it eventually disappears upon dissociation. It is revealed that seven water molecules are needed for the stable dissociation of LiOH (as a completely dissociated conformation), in contrast to the cases of RbOH and CsOH which require four and three water molecules, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.