Abstract

Alkali and alkali earth metals (AAEM) can be removed from lignocellulosic biomass via a new demineralization process constituting hydrothermal treatment. The dissolution mechanism of AAEM in different demineralization processes has not been extensively studied. This study employed calcium as a representative of the AAEM group, and changes in the concentration of calcium ions during the hydrothermal demineralization of eucalyptus wood were studied. The dissolution kinetics were modelled using Fick’s second law. The effects of the reaction temperature, hydrolysate pH, and holding time on the dissolution rate of calcium ions were investigated. The kinetic equation for calcium ion dissolution was expressed as ln(1.9532e0.0077T/1.9532e0.0077T-C) = (0.4257P-0.2142e-10622.1/8.314T)t + ln(1.9532e0.0077T/1.056×10-8T3.5263p0.4449). The activation energy of the reaction was 10.62 kJ/mol. The linear regression coefficient (R2) of the predicted and experimental values was 0.9879, which implied high precision of the kinetic model. The results showed that the calcium ions underwent rapid internal diffusion and dissolution during hydrothermal demineralization. The study provides theoretical support for the efficient removal of alkali earth metals via hydrothermal demineralization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.