Abstract
Nano copper oxide (CuO NP) was added to eight soils to study the effect of aging time of copper on the concentration of diethylenetriaminepentaacetic acid (DTPA)-extracted copper (DTPA-Cu), with bulk copper oxide (CuO BP) and copper nitrate [Cu(NO3)2] used for comparison. Moreover, the effect of soil properties on the dissolution of CuO NP was studied. A dissolution model was used to quantitatively describe the dissolution kinetics of CuO NPs in different soils. The results showed that the concentration of DTPA-Cu decreased with increasing aging time in soils spiked with Cu(NO3)2, while the concentration increased to varying degrees in soils spiked with CuO NPs or CuO BPs. In acidic soils, the equilibrium concentrations of DTPA-Cu were 93.3-98.7mg·kg-1 for CuO NP treatments, 65.5-94.3mg·kg-1 for CuO BP treatments, and 81.4-90.0mg·kg-1 for Cu(NO3)2 treatments, which were greater than those in alkaline soils (43.4-56.9mg·kg-1, 6.26-8.61mg·kg-1, and 73.9-80.0mg·kg-1, respectively). In acidic soils, DTPA-Cu equilibrium concentration ranked the different forms of copper treatments as CuO NPs > Cu(NO3)2 > CuO BPs, while in alkaline soils, the order was Cu(NO3)2 > CuO NPs > CuO BPs. The dissolution rate constants and solubility of CuO NPs were 0.33-6.42 and 37.1-100.1mg·kg-1, respectively. Pearson correlation analysis indicated that the dissolution parameters of CuO NPs were negatively correlated with soil pH and positively correlated with the contents of organic matter, clay, iron oxides, and aluminum oxides. Further, the dissolution rate constant and solubility of CuO NPs could be well predicted by soil pH and the content of free or amorphous aluminum. Our study identified the main factors controlling the dissolution of CuO NPs in farmland soils and highlighted the higher availability of CuO NPs in acidic soils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.