Abstract

Metal silicide/Si photoelectrodes have demonstrated significant potential for application in photoelectrochemical (PEC) water splitting to produce H2 . To achieve an efficient and economical hydrogen evolution reaction (HER), a paramount consideration lies in attaining exceptional catalytic activity on the metal silicide surface with minimal use of noble metals. Here, this study presents the design and construction of a novel Ni0.95 Pt0.05 Si/p-Si photocathode. Dopant segregation is used to achieve a Schottky barrier height as high as 1.0eV and a high photovoltage of 420mV. To achieve superior electrocatalytic activity for HER, a dissolution-induced surface reconstruction (SR) strategy is proposed to in situ convert surface Ni0.95 Pt0.05 Si to highly active Pt2 Si. The resulting SR Ni0.95 Pt0.05 Si/p-Si photocathode exhibits excellent HER performance with an onset potential of 0.45V (vs RHE) and a high maximum photocurrent density of 40.5mAcm-2 and a remarkable applied bias photon-to-current efficiency (ABPE) of 5.3% under simulated AM 1.5 (100mWcm-2 ) illumination. The anti-corrosion silicide layer effectively protects Si, ensuring excellent stability of the SR Ni0.95 Pt0.05 Si/p-Si photoelectrode. This study highlights the potential for achieving efficient PEC HER using bimetallic silicide/Si photocathodes with reduced Pt consumption, offering an auspicious perspective for the cost-effective conversion of solar energy to chemical energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call