Abstract

In the present study, we use direct numerical simulations to examine the role of non-isotropic permeability on solutal convection in a fluid-saturated porous medium. The dense solute injected from the top boundary is driven downwards by gravity and follows a complex time-dependent dynamics. The process of solute dissolution, which is initially controlled by diffusion, becomes dominated by convection as soon as fingers appear, grow, and interact. The dense solute finally reaches the bottom boundary where, due to the prescribed impermeable boundary, it starts filling the domain so to enter the shutdown stage. We present the entire transient dynamics for large Rayleigh-Darcy numbers, Ra, and non-isotropic permeability. We also try to provide suitable and reliable models to parametrize it. With the conceptual setup presented here, we aim at mimicking the process of liquid CO2 sequestration into geological reservoirs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.