Abstract
Motivated by subsurface carbon sequestration, an experimental investigation of dissolution-driven Rayleigh–Darcy convection using two miscible fluids in a Hele-Shaw cell is conducted. A thin horizontal layer of circular impermeable discs is inserted to create an environment with heterogeneous and anisotropic permeability. The Sherwood number that measures the convective mass transfer rate between two fluids at the interface is linked to different parameters of the disc layer, including the disc size, spacing, layer permeability and its relative height with respect to the fluid interface. It is surprising that the convective mass transfer rate in our configuration is dominated by the disc spacing, but almost independent of either the disc size or the mean permeability of the layer. To explain this dependence, the convective mass transfer rate is decomposed into the number, velocity and density contrast of fingers travelling through the disc layer. Both the number and density contrast of fingers show dependences on the disc layer permeability, even though the product of them, the mass transfer rate, does not. In addition, the density contrast also shows a non-monotonic dependence on the disc spacing. The transition point is at a spacing that is close to the finger width. Based on this observation, a simple model based on mixing and scale competition is proposed, and it shows an excellent agreement with the experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.