Abstract

AbstractA geomorphic investigation of the Salinas de Oro salt diapir in the Pyrenees reveals that the ring fracture pattern related to the karstic collapse of the diapir crest may vary significantly depending on the rates of dissolution and salt flow, and the rheology of the overburden. The salt diapir has well-developed concentric faults related to salt dissolution subsidence throughout the Quaternary. Roof strata accommodate subsidence by a combination of downward sagging and brittle collapse leading to the development of a ring monocline that is broken by 5 to 20 m throw conjugated normal faults and a 40 m throw, 9.5-km-long and 200-m-wide keystone graben. The salt diapir top has >100-m-long sinkholes that coalesce to form hollows >70 m deep. Up to 3-km-long radial grabens with a 70 to 90 m vertical throw overprint concentric-ring faulting and displace Quaternary deposits demonstrating active salt flow and diapir rise. Radial faults are linked with salt-withdrawal faults of the Andia Fault Zone (AFZ). Salt flow from the AFZ into the Salinas de Oro salt diapir causes brittle gravitational extension of limestone strata leading to a sequence of grabens and Quaternary faults >10 km long and several hundred meters deep.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call