Abstract

Dissolution behavior of U3O8 and UO2 using supercritical CO2 medium containing HNO3-TBP complex as a reactant was studied. The dissolution rate of the oxides increased with increasing the HNO3/TBP ratio of the HNO3-TBP complex and the concentration of the HNO3-TBP complex in the supercritical CO2 phase. A remarkable increase of the dissolution rate was observed in the dissolution of U3O8 when the HNO3/TBP ratio of the reactant was higher than ca. 1, which indicates that the 2:1 complex, (HNO3)2TBP, plays a role in facilitating the dissolution of the oxides. Half-dissolution time (t½ ) as an indication of the dissolution kinetic was determined from the relationship between the amount of uranium dissolved and the dissolution time (dissolution curve). A logarithmic value of a reciprocal of the t½ was proportional to the logarithmic concentration of HNO3, CHNO3, in the supercritical CO2. The slopes of the (l/t½ ) vs. ln CHNO3 plots for U3O8 and UO2 were different from each other, indicating that the reaction mechanisms or the rate-determining steps for the dissolution of U3O8 and UO2 are different. A principle of the dissolution of uranium oxides with the supercritical CO2 medium is applicable to a method for the removal of uranium from solid matrices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.