Abstract

The aim of the present work was to study the dissolution behaviour of a poorly water-soluble Olmesartan Medoxomil (class II drug), by forming polymeric micelles (PMs) of SoluPlus and Pluronic F127. Polymeric Micelles of SoluPlus and Pluronic F127 were prepared by the co-solvent evaporation method. Drug and excipient compatibility study were carried out by Fourier Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry. The formulations were evaluated for particle size, Zeta Potential, Solubility studies, drug loading and encapsulation efficiency. Scanning Electron Microscopy (SEM) analysis was performed to study the surface morphology of the PMs. The SEM images showed spherical surface of the micelles. The drug loading efficiency was more for SoluPlus micelles compared to Pluronic F127 micelles. The Polymeric micelles showed negative zeta potential value indicating that they are stable and resist aggregation. The particle size was around 100nm and polydispersity index was less than 1 indicating uniform size distribution. The drug release from the SoluPlus micelles was higher than the Pluronic micelles. These results suggest that the polymeric micelles can be used to increase the solubility of poorly water-soluble drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.