Abstract

Colemanite (〖2CaO.3B〗_2 O_3.5H_2 O) is a calcium borate mineral and can be expressed as the primary material of industrial production of boric acid. Boric acid is one of the most essential raw materials obtained by solving colemanite ore in acidic solutions and gases. The dissolution behavior and kinetics of 〖Ca〗^(2+) in a solution of colemanite in a propionic acid solution saturated with synthetic flue gas were examined. In this context; the effects of particle size, reaction temperature, acid concentration, solid-liquid ratio and synthetic flue gas flow rate parameters were investigated. According to the experimental data, it was observed that the amount of 〖Ca〗^(2+) passing to the solution increased with the increase of the reaction temperature, acid concentration and gas flow rate, and with the decrease in solid-liquid ratio and grain size. Experimental results were analyzed by homogeneous and heterogeneous models using the Statistica package program, and it was determined that the dissolution of 〖Ca〗^(2+) in solution complies with the “Avrami” model. The activation energy (E) was found as 〖26.83 kJ.mol〗^(-1) and the Arrhenius constant (A) was found as 〖8.9*10〗^3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call