Abstract

A biopharmaceutics classification system class IV drug, hydrochlorothiazide (HCT), was combined with co-formers of L-and d-arginine (ARG) and sodium lauryl sulphate (SLS) by cryomilling in 1:1 molar ratio. Co-amorphization was observed with L- and D-ARG. These mixtures showed a single glass transition, evidence of possible salt formation and improved physical stability at elevated temperatures and/or humidity when compared with amorphous HCT. The co-amorphous formulations, along with the combinations of HCT and HCT:L-ARG with polyvinylpyrrolidone (PVP) in 1:1 mass ratio, were investigated with a simultaneous dissolution/permeation setup using parallel artificial membrane permeability assay (PAMPA) or Madine Darby kidney cells (MDCKII) as the permeation barrier. It was observed that co-amorphization with L-ARG and D-ARG was able to induce a supersaturated state for HCT, possibly through intermolecular interactions, but there was virtually no difference between the dissolution properties of the mixtures formed with the 2 optical isomers of ARG. The permeability of HCT was found to be dependent on the dissolution properties of the formulations in both PAMPA and cellular barrier experiments. Thus, co-amorphization of HCT with L- and D-ARG demonstrated the possibility to enhance the dissolution and thereby the permeation potential of a BCS class IV drug.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call