Abstract

The latest molecular data—potential energy curves and Rydberg/valence interactions—characterizing the super-excited electronic states of CO are reviewed, in order to provide inputs for the study of their fragmentation dynamics. Starting from this input, the main paths and mechanisms for CO+ dissociative recombination are analyzed; its cross sections are computed using a method based on multichannel quantum defect theory. Convoluted cross sections, giving both isotropic and anisotropic Maxwellian rate coefficients, are compared with merged-beam and storage-ring experimental results. The calculated cross sections underestimate the measured ones by a factor of two, but display a very similar resonant shape. These facts confirm the quality of our approach for the dynamics, and call for more accurate and more extensive molecular structure calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call