Abstract

The photodetachment dynamics of the iodide-aniline cluster, I-(C6H5NH2), were investigated using photoelectron-photofragment coincidence spectroscopy at several photon energies between 3.60 and 4.82 eV in concert with density functional theory calculations. Direct photodetachment from the solvated I- chromophore and a wavelength-independent autodetachment process were observed. Autodetachment is attributed to a charge-transfer-to-solvent reaction in which incipient continuum electrons photodetached from I- are temporarily captured by the nascent neutral iodine-aniline cluster configured in the anion geometry. Subsequent dissociation of the neutral cluster removes the stabilization, leading to autodetachment of the excess electron. The dependence of the dissociative photodetachment (DPD) and autodetachment dynamics on the final spin-orbit electronic state of the iodine fragment is characterized. The dissociation dynamics of the neutral fragments correlated with autodetached electrons were found to be identical to the DPD dynamics of the I atom product spin-orbit state closest to threshold at a given photon energy, lending support to the proposed sequential mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call