Abstract

Directional fragment ejection from a tetrahedral molecule CH4 in linearly polarized two-color (ω and 2ω) asymmetric intense laser fields (50 fs, 1.4 × 1014 W cm-2, 800 nm and 400 nm) has been studied by three-dimensional ion coincidence momentum imaging. The H+ fragment produced from dissociative ionization, CH4 → H+ + CH3 + e-, is preferentially ejected on the larger amplitude side of the laser electric fields. Comparison with theoretical predictions by weak-field asymptotic theory shows that the observed asymmetry can be understood by the orientation selective tunneling ionization from the triply degenerated highest occupied molecular orbital (1t2) of CH4. A similar directional ejection of H+ was also observed for the low kinetic energy components of the two-body Coulomb explosion, CH4 → H+ + CH3+ + 2e-. On the other hand, the fragment ejection in the opposite direction were observed for the high energy component, as well as H2+ produced from the Coulomb explosion CH4 → H2+ + CH2+ + 2e-. Possible origins of the characteristic fragmentation are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call