Abstract

Hydrogen adsorption on the primarily exposed (001), (100), (101), and (201) surfaces of the hexagonal Mo2C phase at different coverage has been investigated at the level of density functional theory and using ab initio thermodynamics. On the Mo-terminated (001) and (100) as well as mixed Mo/C-terminated (101) and (201) surfaces, dissociative H2 adsorption is favored both kinetically and thermodynamically. At high coverage, each surface can have several types of adsorption configurations coexisting, and these types are different from surface to surface. The stable coverage as a function of temperature and partial pressure provides useful information not only for surface science studies at ultrahigh vacuum condition but also for practical applications at high temperature and pressure in monitoring reactions. The differences in the adsorbed H atom numbers and energies of these surfaces indicate their different potential hydrotreating abilities. The relationship between surface stability and stable hydrogen c...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.