Abstract

Dissociative electron attachment (DEA) to acetone is studied in terms of the absolute cross section for various fragment channels in the electron energy range of 0-20 eV. H(-) is found to be the most dominant fragment followed by O(-) and OH(-) with only one resonance peak between 8 and 9 eV. The DEA dynamics is studied by measuring the angular distribution and kinetic energy distribution of fragment anions using Velocity Slice Imaging technique. The kinetic energy and angular distribution of H(-) and O(-) fragments suggest a many body break-up for the lone resonance observed. The ab initio calculations show that electron is captured in the multi-centered anti-bonding molecular orbital which would lead to a many body break-up of the resonance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call