Abstract

The γ-dissociations of 3-substituted bicyclo[1.1.1]pent-1-yl radicals and cyclobutyl radicals were investigated by abinitio SCF MO (HF, MP2, MP3 and MP4/6–31G*) and density functional methods (B3LYP/6–31G*). The transition states were found to resemble the product alkyl radical and [1.1.1]propellane or bicyclo[1.1.0]butane. Calculated endothermicities and energy barriers were comparatively low for loss of the t-butyl radical from the 3-t-butylbicyclo[1.1.1]pent-1-yl radical, which suggested that this dissociation would be significant under laboratory conditions. The dissociation was verified experimentally by means of the reaction of 1-iodo-3-t-butylbicyclo[1.1.1]pentane with tributyltin hydride. Arrhenius parameters for this dissociation were determined by end product analysis. The SCF MO and density functional calculations resulted in much higher endothermicities and energy barriers for γ-dissociations of cyclobutyl radicals, hence neither the formation of bicyclo[1.1.0]butane nor alkyl radical addition to this bicyclic compound was predicted to be important.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.