Abstract
Dissociation pathways of alkali-cationized peptides have been studied using multiple stages of mass spectrometry (MS x ) with a quadrupole ion trap mass spectrometer. Over 100 peptide ions ranging from 2 to 10 residues in length and containing each of the 20 common amino acids have been examined. The formation of the [ b n−1 + Na + OH] + product ion is the predominant dissociation pathway for the majority of the common amino acids. This product corresponds to a sodium-cationized peptide one residue shorter in length than the original peptide. In a few cases, product ions such as [ b n−1 + Na − H] + and those formed by loss, or partial loss, of a sidechain are observed. Both [ b n−1 + Na + OH] + and [ b n−1 + Na − H] + product ions can be selected as parent ions for a subsequent stage of tandem mass spectrometry (MS/MS). It is shown that these dissociation patterns provide opportunities for peptide sequencing by successive dissociation from the C-terminus of alkali-cationized peptides. Up to seven stages of MS/MS have been performed on a series of [ b + Na + OH] + ions to provide sequence information from the C-terminus. This method is analogous to Edman degradation except that the cleavage occurs from the C-terminus instead of the N-terminus, making it more attractive for N-terminal blocked peptides. The isomers leucine and isoleucine cannot be differentiated by this method but the isobars lysine and glutamine can.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Society for Mass Spectrometry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.