Abstract
Spin-polarized density functional theory calculations have been applied to investigate water dissociation catalyzed by Ti adsorbed on icosahedral C20, C60 and C80 fullerene clusters, in order to elucidate the roles that cluster size and Ti-cluster interaction play in the proposed hydrogen generation reaction. We find that two water molecules can be dissociated consecutively by overcoming moderate energy barriers of a few tenths of eV, accompanied by the generation of a H2 molecule for all three clusters. Depending on the cluster size, the fullerene clusters may participate directly in water splitting or indirectly through stereochemical control of the Ti adsorption sites. Our results suggest that fullerene clusters can serve as a flexible platform for rational design of nanostructured catalysts for hydrogen generation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.