Abstract

According to model computations at the B3LYP/6-311+G** level, an external electric field can facilitate the heterolytic dissociation of properly oriented water molecules significantly. Depending on the models used, the maximum predicted change of the dissociation energy in the field is ca. -3 to -4 kcal nm mol(-1) V(-1), and decreases with the cosine of the angle between the external field and the breaking OH bond. These microscopic results can be related semiquantitatively to macroscopic observables from mechanistic studies on the pore formation of anodic aluminum oxide, thus lending support to the equifield strength model and field-enhanced water dissociation at the growing oxide surface that has been put forward in these studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.